Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 598(7880): 368-372, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526721

RESUMO

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Assuntos
Microscopia Crioeletrônica , Reparo do DNA , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
2.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352203

RESUMO

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Assuntos
DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestrutura , Complexos Multiproteicos/genética , Fosforilação/genética
3.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
4.
Nature ; 593(7858): 294-298, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854234

RESUMO

DNA double-strand breaks (DSBs) are a highly cytotoxic form of DNA damage and the incorrect repair of DSBs is linked to carcinogenesis1,2. The conserved error-prone non-homologous end joining (NHEJ) pathway has a key role in determining the effects of DSB-inducing agents that are used to treat cancer as well as the generation of the diversity in antibodies and T cell receptors2,3. Here we applied single-particle cryo-electron microscopy to visualize two key DNA-protein complexes that are formed by human NHEJ factors. The Ku70/80 heterodimer (Ku), the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), DNA ligase IV (LigIV), XRCC4 and XLF form a long-range synaptic complex, in which the DNA ends are held approximately 115 Å apart. Two DNA end-bound subcomplexes comprising Ku and DNA-PKcs are linked by interactions between the DNA-PKcs subunits and a scaffold comprising LigIV, XRCC4, XLF, XRCC4 and LigIV. The relative orientation of the DNA-PKcs molecules suggests a mechanism for autophosphorylation in trans, which leads to the dissociation of DNA-PKcs and the transition into the short-range synaptic complex. Within this complex, the Ku-bound DNA ends are aligned for processing and ligation by the XLF-anchored scaffold, and a single catalytic domain of LigIV is stably associated with a nick between the two Ku molecules, which suggests that the joining of both strands of a DSB involves both LigIV molecules.


Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , DNA/ultraestrutura , DNA/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/ultraestrutura , Modelos Moleculares , Fosforilação
5.
Methods Enzymol ; 592: 159-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668120

RESUMO

DNA repair complexes play crucial roles in maintaining genome integrity, which is essential for the survival of an organism. The understanding of their modes of action is often obscure due to limited structural knowledge. Structural characterizations of these complexes are often challenging due to a poor protein production yield, a conformational flexibility, and a relatively high molecular mass. Single-particle electron microscopy (EM) has been successfully applied to study some of these complexes as it requires low amount of samples, is not limited by the high molecular mass of a protein or a complex, and can separate heterogeneous assemblies. Recently, near-atomic resolution structures have been obtained with EM owing to the advances in technology and image processing algorithms. In this chapter, we review the EM methodology of obtaining three-dimensional reconstructions of macromolecular complexes and provide a workflow that can be applied to DNA repair complex assemblies.


Assuntos
Enzimas Reparadoras do DNA/química , Microscopia Eletrônica/métodos , Animais , Microscopia Crioeletrônica/métodos , Reparo do DNA , Enzimas Reparadoras do DNA/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Coloração Negativa/métodos , Conformação Proteica
6.
PLoS Comput Biol ; 12(10): e1005159, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768684

RESUMO

Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery.


Assuntos
Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , DNA/química , DNA/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Sítios de Ligação , Comunicação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
7.
DNA Repair (Amst) ; 35: 116-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26519825

RESUMO

Aprataxin, aprataxin and PNKP-like factor (APLF) and polynucleotide kinase phosphatase (PNKP) are key DNA-repair proteins with diverse functions but which all contain a homologous forkhead-associated (FHA) domain. Their primary binding targets are casein kinase 2-phosphorylated forms of the XRCC1 and XRCC4 scaffold molecules which respectively coordinate single-stranded and double-stranded DNA break repair pathways. Here, we present the high-resolution X-ray structure of a complex of phosphorylated XRCC4 with APLF, the most divergent of the three FHA domain family members. This, combined with NMR and biochemical analysis of aprataxin and APLF binding to singly and multiply-phosphorylated forms of XRCC1 and XRCC4, and comparison with PNKP reveals a pattern of distinct but overlapping binding specificities that are differentially modulated by multi-site phosphorylation. Together, our data illuminate important differences between activities of the three phospho-binding domains, in spite of a close evolutionary relationship between them.


Assuntos
Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Sítios de Ligação , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Reparo do DNA , Enzimas Reparadoras do DNA/ultraestrutura , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
8.
DNA Repair (Amst) ; 35: 71-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466357

RESUMO

In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we--for the first time--record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Endodesoxirribonucleases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ácidos Nucleicos Heteroduplexes/ultraestrutura
9.
Prog Biophys Mol Biol ; 117(2-3): 182-193, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576492

RESUMO

The Mre11-Rad50-Nbs1 (MRN) complex is a dynamic macromolecular machine that acts in the first steps of DNA double strand break repair, and each of its components has intrinsic dynamics and flexibility properties that are directly linked with their functions. As a result, deciphering the functional structural biology of the MRN complex is driving novel and integrated technologies to define the dynamic structural biology of protein machinery interacting with DNA. Rad50 promotes dramatic long-range allostery through its coiled-coil and zinc-hook domains. Its ATPase activity drives dynamic transitions between monomeric and dimeric forms that can be modulated with mutants modifying the ATPase rate to control end joining versus resection activities. The biological functions of Mre11's dual endo- and exonuclease activities in repair pathway choice were enigmatic until recently, when they were unveiled by the development of specific nuclease inhibitors. Mre11 dimer flexibility, which may be regulated in cells to control MRN function, suggests new inhibitor design strategies for cancer intervention. Nbs1 has FHA and BRCT domains to bind multiple interaction partners that further regulate MRN. One of them, CtIP, modulates the Mre11 excision activity for homologous recombination repair. Overall, these combined properties suggest novel therapeutic strategies. Furthermore, they collectively help to explain how MRN regulates DNA repair pathway choice with implications for improving the design and analysis of cancer clinical trials that employ DNA damaging agents or target the DNA damage response.


Assuntos
Proteínas de Ciclo Celular/química , Enzimas Reparadoras do DNA/química , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , DNA/química , Proteínas Nucleares/química , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestrutura , DNA/genética , DNA/ultraestrutura , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteína Homóloga a MRE11 , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
10.
Cell Cycle ; 8(22): 3750-69, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19855159

RESUMO

The focal accumulation of DNA repair factors, including the MRE11/Rad50/NBS1 (MRN) complex and the phosphohistone variant gamma-H2A.X, is a key cytological feature of the DNA damage response (DDR). Although these foci have been extensively studied by light microscopy, there is comparatively little known regarding their ultrastructure. Using correlative light microscopy and electron spectroscopic imaging (LM/ESI) we have characterised the ultrastructure of chromatin and DNA repair foci within the nuclei of normal human fibroblasts in response to DNA double-strand breaks (DSBs). The induction of DNA DSBs by etoposide leads to a global decrease in chromatin density, which is accompanied by the formation of invaginations of the nuclear envelope as revealed by live-cell microscopy. Using LM/ESI and the immunogold localisation of gamma-H2A.X and MRE11 within repair foci, we also observed decondensed 10 nm chromatin fibres within repair foci and the accumulation of large non-chromosomal protein complexes over three hours recovery from etoposide. At 18 h after etoposide treatment, we observed a close juxtapositioning of PML nuclear bodies and late repair foci of gamma-H2A.X, which exhibited a highly organised chromatin arrangement distinct from earlier repair foci. Finally, the dual immunogold labelling of MRE11 with either gamma-H2A.X or NBS1 revealed that gamma-H2A.X and the MRN complex are sub-compartmentalised within repair foci at the sub-micron scale. Together these data provide the first ultrastructural comparison of gamma-H2A.X and MRN DNA repair foci, which are structurally dynamic over time and strikingly similar in organisation.


Assuntos
Cromatina/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Histonas/ultraestrutura , Substâncias Macromoleculares/química , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Etoposídeo , Humanos , Imuno-Histoquímica , Proteína Homóloga a MRE11 , Microscopia Eletrônica de Transmissão por Filtração de Energia , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura
11.
Nucleic Acids Res ; 37(5): 1580-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19151086

RESUMO

The RAD50/MRE11/NBS1 protein complex (RMN) plays an essential role during the early steps of DNA double-strand break (DSB) repair by homologous recombination. Previous data suggest that one important role for RMN in DSB repair is to provide a link between DNA ends. The striking architecture of the complex, a globular domain from which two extended coiled coils protrude, is essential for this function. Due to its DNA-binding activity, ability to form dimers and interact with both RAD50 and NBS1, MRE11 is considered to be crucial for formation and function of RMN. Here, we show the successful expression and purification of a stable complex containing only RAD50 and NBS1 (RN). The characteristic architecture of the complex was not affected by absence of MRE11. Although MRE11 is a DNA-binding protein it was not required for DNA binding per se or DNA-tethering activity of the complex. The stoichiometry of NBS1 in RMN and RN complexes was estimated by SFM-based volume analysis. These data show that in vitro, R, M and N form a variety of stable complexes with variable subunit composition and stoichiometry, which may be physiologically relevant in different aspects of RMN function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/ultraestrutura , DNA/ultraestrutura , Enzimas Reparadoras do DNA/isolamento & purificação , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteína Homóloga a MRE11 , Microscopia de Força Atômica , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/ultraestrutura , Ligação Proteica
12.
Nano Lett ; 8(6): 1631-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18444686

RESUMO

Quantum dots (QDs) possess highly desirable optical properties that make them ideal fluorescent labels for studying the dynamic behavior of proteins. However, a lack of characterization methods for reliably determining protein-quantum dot conjugate stoichiometry and functionality has impeded their widespread use in single-molecule studies. We used atomic force microscopic (AFM) imaging to demonstrate the 1:1 formation of UvrB-QD conjugates based on an antibody-sandwich method. We show that an agarose gel-based electrophoresis mobility shift assay and AFM can be used to evaluate the DNA binding function of UvrB-QD conjugates. Importantly, we demonstrate that quantum dots can serve as a molecular marker to unambiguously identify the presence of a labeled protein in AFM images.


Assuntos
Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Sítios de Ligação , Ligação Proteica , Pontos Quânticos
13.
Cell Cycle ; 7(10): 1321-5, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18418068

RESUMO

XLF, also known as Cernunnos, is a newly identified core factor of the non-homologous end-joining (NHEJ) pathway for DNA double-strand breaks (DSBs) repair. XLF is known to stimulate DNA ligase IV in vitro through its interaction with XRCC4. Here, we outline the key findings on the dynamic behavior of XLF and XRCC4 at DSBs in living cells. XLF is quickly recruited to DSBs in the absence of XRCC4 or DNA-PKcs. The recruited XLF molecules constantly exchange at DSBs, and XRCC4 modulates the exchange rate of the recruited XLF. XRCC4 can be recruited to DSBs without DNA-PKcs, but DNA-PKcs stabilizes the recruited XRCC4. These observations are inconsistent with the prevailing concept that NHEJ proteins are sequentially recruited to DSBs, which is mainly supported by in vitro evidence. We propose a novel two-phase model for the assembly of NHEJ factors to DSBs in vivo. XLF, XRCC4 and DNA-PKcs are independently recruited to Ku-bound DSBs. The recruited factors are assembled into a large complex, in which the protein interactions observed in vitro define the stability of the recruited factors. This new view has broad implications for the mechanism of DSB sensing and functional protein assembly in the NHEJ pathway.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Linhagem Celular , Reparo do DNA/genética , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Humanos
14.
Mol Cell ; 29(1): 112-21, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18206974

RESUMO

MutL alpha, the heterodimeric eukaryotic MutL homolog, is required for DNA mismatch repair (MMR) in vivo. It has been suggested that conformational changes, modulated by adenine nucleotides, mediate the interactions of MutL alpha with other proteins in the MMR pathway, coordinating the recognition of DNA mismatches by MutS alpha and the activation of MutL alpha with the downstream events that lead to repair. Thus far, the only evidence for these conformational changes has come from X-ray crystallography of isolated domains, indirect biochemical analyses, and comparison to other members of the GHL ATPase family to which MutL alpha belongs. Using atomic force microscopy (AFM), coupled with biochemical techniques, we demonstrate that adenine nucleotides induce large asymmetric conformational changes in full-length yeast and human MutL alpha and that these changes are associated with significant increases in secondary structure. These data reveal an ATPase cycle in which sequential nucleotide binding, hydrolysis, and release modulate the conformational states of MutL alpha.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Nucleotídeos de Adenina/farmacologia , Adenosina Trifosfatases/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Enzimas Reparadoras do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Microscopia de Força Atômica , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Difosfato de Adenosina/farmacologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/farmacologia , Pareamento Incorreto de Bases , Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Dicroísmo Circular , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Dimerização , Humanos , Hidrólise , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Proteína 1 Homóloga a MutL , Proteínas MutL , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
15.
Nature ; 437(7057): 440-3, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16163361

RESUMO

The human Rad50/Mre11/Nbs1 complex (hR/M/N) functions as an essential guardian of genome integrity by directing the proper processing of DNA ends, including DNA breaks. This biological function results from its ability to tether broken DNA molecules. hR/M/N's dynamic molecular architecture consists of a globular DNA-binding domain from which two 50-nm-long coiled coils protrude. The coiled coils are flexible and their apices can self-associate. The flexibility of the coiled coils allows their apices to adopt an orientation favourable for interaction. However, this also allows interaction between the tips of two coiled coils within the same complex, which competes with and frustrates the intercomplex interaction required for DNA tethering. Here we show that the dynamic architecture of hR/M/N is markedly affected by DNA binding. DNA binding by the hR/M/N globular domain leads to parallel orientation of the coiled coils; this prevents intracomplex interactions and favours intercomplex associations needed for DNA tethering. The hR/M/N complex thus is an example of a biological nanomachine in which binding to its ligand, in this case DNA, affects the functional conformation of a domain located 50 nm distant.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Adenilil Imidodifosfato/metabolismo , Soluções Tampão , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , DNA/química , DNA/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Ligantes , Proteína Homóloga a MRE11 , Microscopia de Força Atômica , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Conformação de Ácido Nucleico , Maleabilidade , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...